Stochastic Bias-Reduced Gradient MethodsDownload PDF

21 May 2021, 20:45 (modified: 26 Oct 2021, 14:36)NeurIPS 2021 PosterReaders: Everyone
Keywords: convex optimization, algorithms, monte carlo, debiasing, accelerated gradient methods, privacy, optimal methods, complexity, theory
TL;DR: We develop a nearly unbiased estimator of the minimizer of any strongly-convex function, and describe several applications in convex optimization
Abstract: We develop a new primitive for stochastic optimization: a low-bias, low-cost estimator of the minimizer $x_\star$ of any Lipschitz strongly-convex function $f$. In particular, we use a multilevel Monte-Carlo approach due to Blanchet and Glynn to turn any optimal stochastic gradient method into an estimator of $x_\star$ with bias $\delta$, variance $O(\log(1/\delta))$, and an expected sampling cost of $O(\log(1/\delta))$ stochastic gradient evaluations. As an immediate consequence, we obtain cheap and nearly unbiased gradient estimators for the Moreau envelope of any Lipschitz convex function. We demonstrate the potential of our estimator through four applications. First, we develop a method for minimizing the maximum of $N$ functions, improving on recent results and matching a lower bound up to logarithmic factors. Second and third, we recover state-of-the-art rates for projection-efficient and gradient-efficient optimization using simple algorithms with a transparent analysis. Finally, we show that an improved version of our estimator would yield a nearly linear-time, optimal-utility, differentially-private non-smooth stochastic optimization method.
Supplementary Material: pdf
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
13 Replies

Loading