Grassmannian Class Representation in Deep LearningDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: Grassmannian, geometric optimization, classification, feature transfer, long-tail
Abstract: We generalize the class representative vector found in deep classification networks to linear subspaces and show that the new formulation enables the simultaneous enhancement of the inter-class discrimination and intra-class feature variation. Traditionally, the logit is computed by the inner product between a feature and the class vector. In our modeling, classes are subspaces and the logit is defined as the norm of the projection from a feature onto the subspace. Since the set of subspaces forms Grassmann manifolds, finding the optimal subspace representation for classes is to optimize the loss on a Grassmannian. We integrate the Riemannian SGD into existing deep learning frameworks such that the class subspaces in a Grassmannian are jointly optimized with other model parameters in Euclidean. Compared to the vector form, subspaces have two appealing properties: they can be multi-dimensional and they are scaleless. Empirically, we reveal that these distinct characteristics improve various tasks. (1) Image classification. The new formulation brings the top-1 accuracy of ResNet50-D on ImageNet-1K from 78.04% to 79.37% using the standard augmentation in 100 training epochs. This confirms that the representative capability of subspaces is more powerful than vectors. (2) Feature transfer. Subspaces provide freedom for features to vary and we observed that the intra-class variability of features increases when the subspace dimensions are larger. Consequently, the quality of features is better for downstream tasks. The average transfer accuracy across 6 datasets improves from 77.98% to 80.12% compared to the strong baseline of vanilla softmax. (3) Long-tail classification. The scaleless property of subspaces benefits classification in the long-tail scenario and improves the accuracy of ImageNet-LT from 46.83% to 48.94% compared to the standard formulation. With these encouraging results, we believe that more applications could benefit from the Grassmannian class representation. Codes will be released.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
21 Replies

Loading