Detecting Out-of-Distribution through the Lens of Neural Collapse

27 Sept 2024 (modified: 15 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Out-of-Distribution Detection
Abstract: Out-of-Distribution (OOD) detection is essential for safe deployment; however, existing detectors exhibit generalization discrepancies and cost concerns. To address this, we propose a highly versatile and efficient OOD detector inspired by the trend of Neural Collapse on practical models, without requiring complete collapse. By analyzing this trend, we discover that features of in-distribution (ID) samples cluster closer to the weight vectors compared to features of OOD samples. Additionally, we reveal that ID features tend to expand in space to structure a simplex Equiangular Tight Framework, which explains the prevalent observation that ID features reside further from the origin than OOD features. Taking both insights from Neural Collapse into consideration, our OOD detector utilizes feature proximity to weight vectors and further complements this perspective by using feature norms to filter OOD samples. Extensive experiments on \emph{off-the-shelf} models demonstrate the efficiency and effectiveness of our OOD detector across diverse classification tasks and model architectures, mitigating generalization discrepancies and improving \emph{overall} performance.
Supplementary Material: pdf
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12368
Loading