Tree-Planted Transformers: Large Language Models with Implicit Syntactic SupervisionDownload PDF

Anonymous

16 Feb 2024ACL ARR 2024 February Blind SubmissionReaders: Everyone
Abstract: Large Language Models (LLMs) have achieved remarkable success thanks to scalability on large text corpora, but have some drawback in training efficiency. In contrast, Syntactic Language Models (SLMs) can be trained efficiently to reach relatively high performance thanks to syntactic supervision, but have trouble with scalability. Thus, given these complementary advantages of LLMs and SLMs, it is necessary to develop an architecture that integrates the scalability of LLMs with the training efficiency of SLMs, namely Syntactic Large Language Models (SLLM). In this paper, we propose a novel method dubbed tree-planting: implicitly "plant" trees into attention weights of Transformer LMs to reflect syntactic structures of natural language. Specifically, Transformer LMs trained with tree-planting will be called Tree-Planted Transformers (TPT), which learn syntax on small treebanks via tree-planting and then scale on large text corpora via continual learning with syntactic scaffolding. Targeted syntactic evaluations on the SyntaxGym benchmark demonstrated that TPTs, despite the lack of explicit syntactic supervision, significantly outperformed various SLMs with explicit syntactic supervision that generate hundreds of syntactic structures in parallel, suggesting that tree-planting and TPTs are the promising foundation for SLLMs.
Paper Type: long
Research Area: Linguistic theories, Cognitive Modeling and Psycholinguistics
Contribution Types: NLP engineering experiment, Approaches low compute settings-efficiency
Languages Studied: English
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview