CRRL: Learning Channel-invariant Neural Representations for High-performance Cross-day Decoding

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Neural Decoding
Abstract: Brain-computer interfaces have shown great potential in motor and speech rehabilitation, but still suffer from low performance stability across days, mostly due to the instabilities in neural signals. These instabilities, partially caused by neuron deaths and electrode shifts, leading to channel-level variabilities among different recording days. Previous studies mostly focused on aligning multi-day neural signals of onto a low-dimensional latent manifold to reduce the variabilities, while faced with difficulties when neural signals exhibit significant drift. Here, we propose to learn a channel-level invariant neural representation to address the variabilities in channels across days. It contains a channel-rearrangement module to learn stable representations against electrode shifts, and a channel reconstruction module to handle the missing neurons. The proposed method achieved the state-of-the-art performance with cross-day decoding tasks over two months, on multiple benchmark BCI datasets. The proposed approach showed good generalization ability that can be incorporated to different neural networks.
Supplementary Material: zip
Primary Area: Neuroscience and cognitive science (e.g., neural coding, brain-computer interfaces)
Submission Number: 5593
Loading