Break the Trade-off Between Watermark Strength and Speculative Sampling Efficiency for Language Models

Published: 26 Jan 2026, Last Modified: 11 Feb 2026ICLR 2026 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Watermark, LLM decoding, Speculative Sampling
TL;DR: We revisit the trade-off between watermarking and speculative sampling, introducing a new strength measure and mechanism to break the trade-off.
Abstract: Watermarking is a principled approach for tracing the provenance of large language model (LLM) outputs, but its deployment in practice is hindered by inference inefficiency. Speculative sampling accelerates inference, with efficiency improving as the acceptance rate between draft and target models increases. Yet recent work reveals a fundamental trade-off: higher watermark strength reduces acceptance, preventing their simultaneous achievement. We revisit this trade-off and show it is not absolute. We introduce a quantitative measure of watermark strength that governs statistical detectability and is maximized when tokens are deterministic functions of pseudorandom numbers. Using this measure, we fully characterize the trade-off as a constrained optimization problem and derive explicit Pareto curves for two existing watermarking schemes. Finally, we introduce a principled mechanism that injects pseudorandomness into draft-token acceptance, ensuring maximal watermark strength while maintaining speculative sampling efficiency. Experiments further show that this approach improves detectability without sacrificing efficiency. Our findings uncover a principle that unites speculative sampling and watermarking, paving the way for their efficient and practical deployment.
Supplementary Material: zip
Primary Area: generative models
Submission Number: 5331
Loading