A Hybrid, Dual Domain, Cascade of Convolutional Neural Networks for Magnetic Resonance Image Reconstruction
Keywords: Magnetic resonance imaging, image reconstruction, compressed sensing, deep learning
TL;DR: A hybrid cascade architecture for MR reconstruction
Abstract: Deep-learning-based magnetic resonance (MR) imaging reconstruction techniques have the potential to accelerate MR image acquisition by reconstructing in real-time clinical quality images from k-spaces sampled at rates lower than specified by the Nyquist-Shannon sampling theorem, which is known as compressed sensing. In the past few years, several deep learning network architectures have been proposed for MR compressed sensing reconstruction. After examining the successful elements in these network architectures, we propose a hybrid frequency-/image-domain cascade of convolutional neural networks intercalated with data consistency layers that is trained end-to-end for compressed sensing reconstruction of MR images. We compare our method with five recently published deep learning-based methods using MR raw data. Our results indicate that our architecture improvements were statistically significant (Wilcoxon signed-rank test, p<0.05). Visual assessment of the images reconstructed confirm that our method outputs images similar to the fully sampled reconstruction reference.
Code Of Conduct: I have read and accept the code of conduct.
Remove If Rejected: (optional) Remove submission if paper is rejected.
7 Replies
Loading