Learning to Reason: Distilling Hierarchy via Self-Supervision and Reinforcement Learning

Anonymous

Sep 25, 2019 ICLR 2020 Conference Blind Submission readers: everyone Show Bibtex
  • TL;DR: This work attempts to construct a hierarchical structure that combines learning and reasoning for multi-task RL.
  • Abstract: We present a hierarchical planning and control framework that enables an agent to perform various tasks and adapt to a new task flexibly. Rather than learning an individual policy for each particular task, the proposed framework, DISH, distills a hierarchical policy from a set of tasks by self-supervision and reinforcement learning. The framework is based on the idea of latent variable models that represent high-dimensional observations using low-dimensional latent variables. The resulting policy consists of two levels of hierarchy: (i) a planning module that reasons a sequence of latent intentions that would lead to optimistic future and (ii) a feedback control policy, shared across the tasks, that executes the inferred intention. Because the reasoning is performed in low-dimensional latent space, the learned policy can immediately be used to solve or adapt to new tasks without additional training. We demonstrate the proposed framework can learn compact representations (3-dimensional latent states for a 90-dimensional humanoid system) while solving a small number of imitation tasks, and the resulting policy is directly applicable to other types of tasks, i.e., navigation in cluttered environments.
  • Keywords: Reinforcement learning, Self-supervised learning, unsupervised learning, representation learning
0 Replies

Loading