On the Global Convergence of Training Deep Linear ResNetsDownload PDF

25 Sep 2019 (modified: 11 Mar 2020)ICLR 2020 Conference Blind SubmissionReaders: Everyone
  • Original Pdf: pdf
  • TL;DR: Under certain condition on the input and output linear transformations, both GD and SGD can achieve global convergence for training deep linear ResNets.
  • Abstract: We study the convergence of gradient descent (GD) and stochastic gradient descent (SGD) for training $L$-hidden-layer linear residual networks (ResNets). We prove that for training deep residual networks with certain linear transformations at input and output layers, which are fixed throughout training, both GD and SGD with zero initialization on all hidden weights can converge to the global minimum of the training loss. Moreover, when specializing to appropriate Gaussian random linear transformations, GD and SGD provably optimize wide enough deep linear ResNets. Compared with the global convergence result of GD for training standard deep linear networks \citep{du2019width}, our condition on the neural network width is sharper by a factor of $O(\kappa L)$, where $\kappa$ denotes the condition number of the covariance matrix of the training data. We further propose a modified identity input and output transformations, and show that a $(d+k)$-wide neural network is sufficient to guarantee the global convergence of GD/SGD, where $d,k$ are the input and output dimensions respectively.
13 Replies