REPA Works Until It Doesn’t: Early-Stopped, Holistic Alignment Supercharges Diffusion Training

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Diffusion models, Efficient training, Representation learning
TL;DR: We propose HASTE, which combines holistic alignment (feature and attention) with early termination to accelerate diffusion transformer training by 28× while maintaining quality.
Abstract: Diffusion Transformers (DiTs) deliver state-of-the-art image quality, yet their training remains notoriously slow. A recent remedy---representation alignment (REPA) that matches DiT hidden features to those of a non-generative teacher (e.g., DINO)---dramatically accelerates the early epochs but plateaus or even degrades performance later. We trace this failure to the capacity mismatch: once the generative student begins modeling the joint data distribution, the teacher's lower-dimensional embeddings and attention patterns become a straitjacket rather than a guide. We then introduce HASTE (Holistic Alignment with Stage-wise Termination for Efficient training), a two-phase schedule that keeps the help and drops the hindrance. Phase I applies a holistic alignment loss that simultaneously distills attention maps (relational priors) and feature projections (semantic anchors) from the teacher into mid-level layers of the DiT, yielding rapid convergence. Phase II then performs one-shot termination that deactivates the alignment loss, once a simple trigger such as a fixed iteration is hit, freeing the DiT to focus on denoising and exploit its generative capacity. HASTE speeds up training of diverse DiTs without architecture changes. On ImageNet 256×256, it reaches the vanilla SiT-XL/2 baseline FID in 50 epochs and matches REPA’s best FID in 500 epochs, amounting to a 28× reduction in optimization steps. HASTE also improves text-to-image DiTs on MS-COCO, proving to be a simple yet principled recipe for efficient diffusion training across various tasks.
Supplementary Material: zip
Primary Area: Deep learning (e.g., architectures, generative models, optimization for deep networks, foundation models, LLMs)
Submission Number: 15358
Loading