AFLoRA: Adaptive Freezing of Low Rank Adaptation in Parameter Efficient Fine-Tuning of Large ModelsDownload PDF

Anonymous

16 Feb 2024ACL ARR 2024 February Blind SubmissionReaders: Everyone
Abstract: We present a novel Parameter-Efficient Fine-Tuning (PEFT) method, dubbed as \textit{Adaptive Freezing of Low Rank Adaptation} (AFLoRA). Specifically, for each pre-trained frozen weight tensor, we add a parallel path of trainable low-rank matrices, namely a down-projection and an up-projection matrix, each of which is followed by a feature transformation vector. Based on a novel \textit{freezing score}, we the incrementally freeze these projection matrices during fine-tuning to reduce the computation and alleviate over-fitting. Our experimental results demonstrate that we can achieve state-of-the-art performance with an average improvement of up to $0.85\%$ as evaluated on GLUE benchmark while yeilding up to $9.5\times$ fewer average trainable parameters. While compared in terms of runtime, AFLoRA can yield up to $1.86\times$ improvement as opposed to similar PEFT alternatives. Besides the practical utility of our approach, we provide insights on the trainability requirements of LoRA paths at different modules and the freezing schedule for the different projection matrices.
Paper Type: short
Research Area: Efficient/Low-Resource Methods for NLP
Contribution Types: Approaches to low-resource settings, Approaches low compute settings-efficiency
Languages Studied: English
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview