Keywords: Graph Kernels, Subgraphs
TL;DR: We propose WLKS that extends the WL graph kernel to subgraphs, captures high-order structural similarities in k-hop neighborhoods, efficiently outperforming state-of-the-art GNNs.
Abstract: Subgraph representation learning has been effective in solving various real-world problems. However, current graph neural networks (GNNs) produce suboptimal results for subgraph-level tasks due to their inability to capture complex interactions within and between subgraphs. To provide a more expressive and efficient alternative, we propose WLKS, a Weisfeiler-Lehman (WL) kernel generalized for subgraphs by applying the WL algorithm on induced k-hop neighborhoods. We combine kernels across different k-hop levels to capture richer structural information that is not fully encoded in existing models. Our approach can balance expressiveness and efficiency by eliminating the need for neighborhood sampling. In experiments on eight real-world and synthetic benchmarks, WLKS significantly outperforms leading approaches on five datasets while reducing training time, ranging from 0.01x to 0.25x compared to the state-of-the-art.
Supplementary Material: zip
Primary Area: learning on graphs and other geometries & topologies
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9656
Loading