Keywords: Image deraining, Rain removal, Ultra-high-definition, 4K image, Benchmark dataset, Vision MLP
Abstract: Despite significant progress has been made in image deraining, existing approaches are mostly carried out on low-resolution images. The effectiveness of these methods on high-resolution images is still unknown, especially for ultra-high-definition (UHD) images, given the continuous advancement of imaging devices. In this paper, we focus on the task of UHD image deraining, and contribute the first large-scale UHD image deraining dataset, 4K-Rain13k, that contains 13,000 image pairs at 4K resolution. Based on this dataset, we conduct a benchmark study on existing methods for processing UHD images. Furthermore, we develop an effective and efficient architecture (called UDR-Mixer) to better solve this task. Specifically, our method contains two building components: a spatial feature rearrangement layer that captures long-range information of UHD images, and a frequency feature modulation layer that facilitates high-quality UHD image reconstruction. Extensive experimental results demonstrate that our method performs favorably against the state-of-the-art approaches while maintaining a lower model complexity. The code and dataset will be available to the public.
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5779
Loading