Probabilistic Transformer For Time Series AnalysisDownload PDF

May 21, 2021 (edited Oct 26, 2021)NeurIPS 2021 PosterReaders: Everyone
  • Keywords: state space models, transformer, time series forecasting, human motion prediction, video prediction
  • Abstract: Generative modeling of multivariate time series has remained challenging partly due to the complex, non-deterministic dynamics across long-distance timesteps. In this paper, we propose deep probabilistic methods that combine state-space models (SSMs) with transformer architectures. In contrast to previously proposed SSMs, our approaches use attention mechanism to model non-Markovian dynamics in the latent space and avoid recurrent neural networks entirely. We also extend our models to include several layers of stochastic variables organized in a hierarchy for further expressiveness. Compared to transformer models, ours are probabilistic, non-autoregressive, and capable of generating diverse long-term forecasts with uncertainty estimates. Extensive experiments show that our models consistently outperform competitive baselines on various tasks and datasets, including time series forecasting and human motion prediction.
  • Supplementary Material: pdf
  • Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
9 Replies

Loading