Abstract: Large Multimodal Models (LMMs) have made significant breakthroughs with the advancement of instruction tuning. However, while existing models can understand images and videos at a holistic level, they still struggle with instance-level understanding that requires a more fine-grained comprehension and alignment. Instance-level understanding is crucial for LMMs, as it focuses on the specific elements that we are most interested in. Excitingly, existing works find that the state-of-the-art LMMs exhibit strong instance understanding capabilities when provided with explicit visual cues. Motivated by this, we proposed Inst-IT, a solution to enhance LMMs in Instance understanding via explicit visual prompt Instruction Tuning for instance guidance. Inst-IT consists of a benchmark to diagnose multimodal instance-level understanding, a large-scale instruction-tuning dataset, and a continuous instruction-tuning training paradigm to effectively enhance spatial-temporal instance understanding capabilities of existing LMMs. Experimental results show that, enhanced by Inst-IT, our models not only achieve outstanding performance on Inst-IT-Bench and other instance understanding benchmarks, but also demonstrate significant improvements across various generic image and video understanding benchmarks. This highlights that our method not only boosts instance-level understanding but also strengthens the overall capabilities of generic image and video comprehension.
Loading