Learning Rationalizable Equilibria in Multiplayer GamesDownload PDF

Published: 01 Feb 2023, Last Modified: 28 Feb 2023ICLR 2023 posterReaders: Everyone
Keywords: Game Theory, Online Learning, Rationalizability
TL;DR: We develop provably efficient algorithms for finding approximate CE and CCE that are also rationalizable.
Abstract: A natural goal in multi-agent learning is to learn \emph{rationalizable} behavior, where players learn to avoid any Iteratively Dominated Action (IDA). However, standard no-regret based equilibria-finding algorithms could take exponential samples to find such rationalizable strategies. In this paper, we first propose a simple yet sample-efficient algorithm for finding a rationalizable action profile in multi-player general-sum games under bandit feedback, which substantially improves over the results of Wu et al. We further develop algorithms with the first efficient guarantees for learning rationalizable Coarse Correlated Equilibria (CCE) and Correlated Equilibria (CE). Our algorithms incorporate several novel techniques to guarantee the elimination of IDA and no (swap-)regret simultaneously, including a correlated exploration scheme and adaptive learning rates, which may be of independent interest. We complement our results with a sample complexity lower bound showing the sharpness of our guarantees.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Theory (eg, control theory, learning theory, algorithmic game theory)
10 Replies