FLOPs as a Direct Optimization Objective for Learning Sparse Neural NetworksDownload PDF

Published: 07 Nov 2018, Last Modified: 05 May 2023NIPS 2018 Workshop CDNNRIA Blind SubmissionReaders: Everyone
Abstract: There exists a plethora of techniques for inducing structured sparsity in parametric models during the optimization process, with the final goal of resource-efficient inference. However, to the best of our knowledge, none target a specific number of floating-point operations (FLOPs) as part of a single end-to-end optimization objective, despite reporting FLOPs as part of the results. Furthermore, a one-size-fits-all approach ignores realistic system constraints, which differ significantly between, say, a GPU and a mobile phone -- FLOPs on the former incur less latency than on the latter; thus, it is important for practitioners to be able to specify a target number of FLOPs during model compression. In this work, we extend a state-of-the-art technique to directly incorporate FLOPs as part of the optimization objective and show that, given a desired FLOPs requirement, different neural networks can be successfully trained for image classification.
TL;DR: We extend a state-of-the-art technique to directly incorporate FLOPs as part of the optimization objective, and we show that, given a desired FLOPs requirement, different neural networks are successfully trained.
Keywords: FLOPs optimization, neural network compression
5 Replies

Loading