Blending Diverse Physical Priors with Neural NetworksDownload PDF

25 Sept 2019 (modified: 22 Oct 2023)ICLR 2020 Conference Blind SubmissionReaders: Everyone
Keywords: Physics-based learning, Physics-aware learning
TL;DR: A new method for physics-based learning is proposed that can handle a more diverse range of quality in the physical prior and dataset.
Abstract: Rethinking physics in the era of deep learning is an increasingly important topic. This topic is special because, in addition to data, one can leverage a vast library of physical prior models (e.g. kinematics, fluid flow, etc) to perform more robust inference. The nascent sub-field of physics-based learning (PBL) studies this problem of blending neural networks with physical priors. While previous PBL algorithms have been applied successfully to specific tasks, it is hard to generalize existing PBL methods to a wide range of physics-based problems. Such generalization would require an architecture that can adapt to variations in the correctness of the physics, or in the quality of training data. No such architecture exists. In this paper, we aim to generalize PBL, by making a first attempt to bring neural architecture search (NAS) to the realm of PBL. We introduce a new method known as physics-based neural architecture search (PhysicsNAS) that is a top-performer across a diverse range of quality in the physical model and the dataset.
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/arxiv:1910.00201/code)
Original Pdf: pdf
10 Replies

Loading