Private Federated Learning with Dynamic Power Control via Non-Coherent Over-the-Air Computation

Published: 19 Jun 2023, Last Modified: 26 Jul 2023FL-ICML 2023EveryoneRevisionsBibTeX
Keywords: Federated Learning, SignSGD, Over-the-Air Computation, OFDM, Dynamic Power Control
TL;DR: Weighted wireless signal superposition and majority vote can well protect model weight provicay and improve the porformance of federated learning
Abstract: To further preserve model weight privacy and improve model performance in Federated Learning (FL), FL via Over-the-Air Computation (AirComp) scheme based on dynamic power control is proposed. The edge devices (EDs) transmit the signs of local stochastic gradients by activating two adjacent orthogonal frequency division multiplexing (OFDM) subcarriers, and majority votes (MVs) at the edge server (ES) are obtained by exploiting the energy accumulation on the subcarriers. Then, we propose a dynamic power control algorithm to further offset the biased aggregation of the MV aggregation values. We show that the whole scheme can mitigate the impact of the time synchronization error, channel fading and noise. The theoretical convergence proof of the scheme is re-derived.
Submission Number: 58