OT-Attack: Enhancing Adversarial Transferability of Vision-Language Models via Optimal Transport Optimization
Keywords: adversarial transferability, VLP models, optimal transport
Abstract: Vision-language pre-training (VLP) models demonstrate impressive abilities in processing both images and text.
However, they are vulnerable to multi-modal adversarial examples (AEs). Investigating the generation of high-transferability adversarial examples is crucial for uncovering VLP models’ vulnerabilities in practical scenarios. Recent works have indicated that leveraging data augmentation and image-text modal interactions can enhance the transferability of adversarial examples for VLP models significantly. However, they do not consider the optimal alignment problem between dataaugmented image-text pairs. This oversight leads to adversarial examples that are overly tailored to the source model, thus limiting improvements in transferability. In our research, we first explore the interplay between image sets produced through data augmentation and their corresponding text sets. We find that augmented image samples can align optimally with certain texts while exhibiting less relevance to others. Motivated by this, we propose an Optimal Transport-based Adversarial Attack, dubbed OT-Attack. The proposed method formulates the features of image and text sets as two distinct distributions and employs optimal transport theory to determine the most efficient mapping between them. This optimal mapping informs our generation of adversarial examples to effectively counteract the overfitting issues. Extensive experiments across various network architectures and datasets in image-text matching tasks reveal that our OT-Attack outperforms existing stateof-the-art methods in terms of adversarial transferability.
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2912
Loading