Semi-Supervised Offline Reinforcement Learning with Action-Free TrajectoriesDownload PDF

Published: 03 Mar 2023, Last Modified: 14 Apr 2024RRL 2023 PosterReaders: Everyone
Abstract: Natural agents can effectively learn from multiple data sources that differ in size, quality, and types of measurements. We study this heterogeneity in the context of offline reinforcement learning (RL) by introducing a new, practically motivated semi-supervised setting. Here, an agent has access to two sets of trajectories: labelled trajectories containing state, action, reward triplets at every timestep, along with unlabelled trajectories that contain only state and reward information. For this setting, we develop and study a simple meta-algorithmic pipeline that learns an inverse dynamics model on the labelled data to obtain proxy-labels for the unlabelled data, followed by the use of any offline RL algorithm on the true and proxy-labelled trajectories. Empirically, we find this simple pipeline to be highly successful --- on several D4RL benchmarks~\cite{fu2020d4rl}, certain offline RL algorithms can match the performance of variants trained on a fully labelled dataset even when we label only 10% trajectories from the low return regime. To strengthen our understanding, we perform a large-scale controlled empirical study investigating the interplay of data-centric properties of the labelled and unlabelled datasets, with algorithmic design choices (e.g., choice of inverse dynamics, offline RL algorithm) to identify general trends and best practices for training RL agents on semi-supervised offline datasets.
Track: Technical Paper
Confirmation: I have read and agree with the workshop's policy on behalf of myself and my co-authors.
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/arxiv:2210.06518/code)
2 Replies

Loading