Novel View Synthesis with Diffusion ModelsDownload PDF

Published: 01 Feb 2023, Last Modified: 20 Feb 2023ICLR 2023 posterReaders: Everyone
Keywords: 3D, diffusion, ddpm, novel, view, synthesis, generative, models
TL;DR: Novel View Synthesis with diffusion models from as few a single image
Abstract: We present 3DiM (pronounced "three-dim"), a diffusion model for 3D novel view synthesis from as few as a single image. The core of 3DiM is an image-to-image diffusion model -- 3DiM takes a single reference view and their poses as inputs, and generates a novel view via diffusion. 3DiM can then generate a full 3D consistent scene following our novel stochastic conditioning sampler: the output frames of the scene are generated autoregressively, and during the reverse diffusion process of each individual frame, we select a random conditioning frame from the set of previous frames at each denoising step. We demonstrate that stochastic conditioning yields much more 3D consistent results compared to the naive sampling process which only conditions on a single previous frame. We compare 3DiMs to prior work on the SRN ShapeNet dataset, demonstrating that 3DiM's generated videos from a single view achieve much higher fidelity while being approximately 3D consistent. We also introduce a new evaluation methodology, 3D consistency scoring, to measure the 3D consistency of a generated object by training a neural field on the model's output views. 3DiMs are geometry free, do not rely on hyper-networks or test-time optimization for novel view synthesis, and allow a single model to easily scale to a large number of scenes.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Generative models
Supplementary Material: zip
13 Replies

Loading