Model-free reinforcement learning with noisy actions for automated experimental control in optics

26 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: reinforcement learning, model-free, experimental control, optics, fiber coupling
TL;DR: We use model-free reinforcement learning to couple laser light into an optical fiber.
Abstract: Setting up and controlling optical systems is often a challenging and tedious task. The high number of degrees of freedom to control mirrors, lenses or phases makes automatic control challenging, especially when the complexity of the system cannot be adequately modeled due to noise or non-linearities. Here, we show that reinforcement learning (RL) can overcome these challenges when coupling laser light into an optical fiber, using a model-free RL approach that trains directly on the experiment without pre-training. By utilizing the sample-efficient algorithms Soft Actor-Critic (SAC) or Truncated Quantile Critics (TQC), our agent learns to couple with 90% efficiency, comparable to the human expert. We demonstrate that direct training on an experiment can replace extensive system modeling. Our result exemplifies RL's potential to tackle problems in optics, paving the way for more complex applications where full noise modeling is not feasible.
Supplementary Material: zip
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6500
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview