On Provable Length and Compositional Generalization

ICLR 2025 Conference Submission5063 Authors

25 Sept 2024 (modified: 02 Dec 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: sequence-to-sequence models, length generalization, compositional generalization, out-of-distribution generalization
TL;DR: We give first provable guarantees on length and compositional generalization for a range of limited capacity architectures -- deep sets, transformers, SSMs, RNNs
Abstract: Out-of-distribution generalization capabilities of sequence-to-sequence models can be studied from the lens of two crucial forms of generalization: length generalization -- the ability to generalize to longer sequences than ones seen during training, and compositional generalization: the ability to generalize to token combinations not seen during training. In this work, we provide first provable guarantees on length and compositional generalization for common sequence-to-sequence models -- deep sets, transformers, state space models, and recurrent neural nets -- trained to minimize the prediction error. Taking a first principles perspective, we study the realizable case, i.e., the labeling function is realizable on the architecture. We show that simple limited capacity versions of these different architectures achieve both length and compositional generalization. Across different architectures, we also find that a linear relationship between the learned representation and the representation in the labeling function is necessary for length and compositional generalization.
Supplementary Material: zip
Primary Area: learning theory
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5063
Loading