Boosted Generative ModelsDownload PDF

12 May 2025 (modified: 23 Mar 2025)Submitted to ICLR 2017Readers: Everyone
Abstract: We propose a new approach for using boosting to create an ensemble of generative models, where models are trained in sequence to correct earlier mistakes. Our algorithm can leverage many existing base learners, including recent latent variable models. Further, our approach allows the ensemble to leverage discriminative models trained to distinguish real data from model generated data. We show theoretical conditions under which incorporating a new model to the ensemble will improve the fit and empirically demonstrate the effectiveness of boosting on density estimation and sample generation on real and synthetic datasets.
Conflicts: cs.stanford.edu
Keywords: Theory, Deep learning, Unsupervised Learning
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 3 code implementations](https://www.catalyzex.com/paper/boosted-generative-models/code)
11 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview