DLP-LoRA: Efficient Task-Specific LoRA Fusion with a Dynamic, Lightweight Plugin for Large Language Models

ICLR 2025 Conference Submission13516 Authors

28 Sept 2024 (modified: 21 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Multi-LoRA fusion, Parameter Efficient Tuning, LoRA, Cross-Task Generalization
TL;DR: We propose DLP-LoRA, a dynamic lightweight plugin using a mini-MLP to efficiently fuse multi-LoRAs at the sentence level. Evaluated on 26 tasks, DLP-LoRA matches or surpasses single-task LoRA with minimal inference overhead.
Abstract: Recent advancements in Large Language Models (LLMs) have achieved robust performance across diverse tasks, but fine-tuning these models for specific domains remains resource-intensive. Parameter-Efficient Fine-Tuning (PEFT) methods like Low-Rank Adaptation (LoRA) address this challenge by fine-tuning a small subset of parameters. However, existing methods for fusing multiple LoRAs lack dynamic fusion based on contextual inputs and often increase inference time due to token-level operations. We propose DLP-LoRA, a Dynamic Lightweight Plugin that employs a mini-MLP module with only 5M parameters to dynamically fuse multiple LoRAs at the sentence level using top-$p$ sampling strategies. This approach reduces inference time to less than twice that of single LoRA inference by leveraging parallel computation. Evaluations across 26 tasks—including multiple-choice questions and question answering—demonstrate that DLP-LoRA achieves an average accuracy of 92.34\% on multiple-choice datasets and significant improvements in BLEU and ROUGE scores on QA datasets, outperforming different LLMs backbones under composite task settings. DLP-LoRA effectively balances performance and efficiency, making it a practical solution for dynamic multi-task adaptation in LLMs.
Supplementary Material: zip
Primary Area: transfer learning, meta learning, and lifelong learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13516
Loading