Keywords: Representation learning, Disentanglement, Group Theory
Abstract: Symmetry-based disentangled representation learning leverages the group structure of environment transformations to uncover the latent factors of variation. Prior approaches to symmetry-based disentanglement have required strong prior knowledge of the symmetry group's structure, or restrictive assumptions about the subgroup properties. In this work, we remove these constraints by proposing a method whereby an embodied agent autonomously discovers the group structure of its action space through unsupervised interaction with the environment. We prove the identifiability of the true action group decomposition under minimal assumptions, and derive two algorithms: one for discovering the group decomposition from interaction data, and another for learning Linear Symmetry-Based Disentangled (LSBD) representations without assuming specific subgroup properties. Our method is validated on three environments exhibiting different group decompositions, where it outperforms existing LSBD approaches.
Supplementary Material: zip
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Submission Number: 20235
Loading