Re-evaluating Retrosynthesis Algorithms with Syntheseus

ICLR 2024 Workshop DMLR Submission57 Authors

Published: 04 Mar 2024, Last Modified: 02 May 2024DMLR @ ICLR 2024EveryoneRevisionsBibTeXCC BY 4.0
Keywords: retrosynthesis, reaction prediction, chemistry, drug design, science
TL;DR: We outline pitfalls and best practice for evaluating retrosynthesis algorithms and build an evaluation framework based on them
Abstract: The planning of how to synthesize molecules, also known as retrosynthesis, has been a growing focus of the machine learning and chemistry communities in recent years. Despite the appearance of steady progress, we argue that imperfect benchmarks and inconsistent comparisons mask systematic shortcomings of existing techniques. To remedy this, we present a benchmarking library called syntheseus which promotes best practice by default, enabling consistent meaningful evaluation of single-step and multi-step retrosynthesis algorithms. We use syntheseus to re-evaluate a number of previous retrosynthesis algorithms, and find that the ranking of state-of-the-art models changes when evaluated carefully. We end with guidance for future works in this area.
Primary Subject Area: Domain specific data issues
Paper Type: Research paper: up to 8 pages
DMLR For Good Track: Participate in DMLR for Good Track
Participation Mode: In-person
Confirmation: I have read and agree with the workshop's policy on behalf of myself and my co-authors.
Submission Number: 57
Loading