Enhancing Trust-Region Bayesian Optimization via Derivatives of Gaussian Processes

28 Sept 2024 (modified: 28 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Bayesian optimization, High-dimensional Bayesian optimization, Trust-Region methods
Abstract: Bayesian Optimization (BO) has been widely applied to optimize expensive black-box functions while retaining sample efficiency. However, scaling BO to high-dimensional spaces remains challenging. Existing literature proposes performing standard BO in several local trust regions (TuRBO) for heterogeneous modeling of the objective function and avoiding over-exploration. Despite its advantages, using local Gaussian Processes (GPs) reduces sampling efficiency compared to a global GP. To enhance sampling efficiency while preserving heterogeneous modeling, we propose to construct several local quadratic models using gradients and Hessians from a global GP, and select new sample points by solving the bound-constrained quadratic program. We provide a convergence analysis and demonstrate through experimental results that our method enhances the efficacy of TuRBO and outperforms a wide range of high-dimensional BO techniques on synthetic functions and real-world applications.
Primary Area: probabilistic methods (Bayesian methods, variational inference, sampling, UQ, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13989
Loading