Learning High-Order Relationships of Brain Regions

23 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: applications to neuroscience & cognitive science
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: fMRI, information bottleneck, brain
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: A method to learn high-order relationship of brain regions via information bottleneck
Abstract: Discovering reliable and informative interactions among brain regions from functional magnetic resonance imaging (fMRI) signals is essential in neuroscientific predictions of cognition. Most of the current methods fail to accurately characterize those interactions because they only focus on pairwise connections and overlook the high-order relationships of brain regions. We delve into this problem and argue that these high-order relationships should be maximally informative and minimally redundant (MIMR). However, identifying such high-order relationships is challenging and highly under-explored. Methods that can be tailored to our context are also non-existent. In response to this gap, we propose a novel method named HyBRiD that aims to extract MIMR high-order relationships from fMRI data. HyBRiD employs a Constructor to identify hyperedge structures, and a Weighter to compute a weight for each hyperedge. HyBRiD achieves the MIMR objective through an innovative information bottleneck framework named multi-head drop-bottleneck with theoretical guarantees. Our comprehensive experiments demonstrate the effectiveness of our model. In terms of the quality of hyperedges measured by the CPM metric, our model outperforms the state-of-the-art predictive model by an average of 12.1%.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8333
Loading