Migician: Revealing the Magic of Free-Form Multi-Image Grounding in Multimodal Large Language Models

ACL ARR 2024 December Submission2128 Authors

16 Dec 2024 (modified: 05 Feb 2025)ACL ARR 2024 December SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: The recent advancement of Multimodal Large Language Models (MLLMs) has significantly improved their fine-grained perception of single images and general comprehension across multiple images. However, existing MLLMs still face challenges in achieving precise grounding in complex multi-image scenarios. To address this, we first explore a Chain-of-Thought (CoT) framework that integrates single-image grounding with multi-image comprehension. While partially effective, it remains unstable and struggles to capture abstract visual information due to its non-end-to-end nature. Therefore, we introduce Migician, the first multi-image grounding model capable of performing free-form and accurate grounding across multiple images. To support this, we present the MGrounding-630k dataset, which comprises data for several multi-image grounding tasks derived from existing datasets, along with newly generated free-form grounding instruction-following data. Furthermore, we propose MIG-Bench, a comprehensive benchmark specifically designed for evaluating multi-image grounding capabilities. Experimental results demonstrate that our model achieves significantly superior multi-image grounding capabilities, outperforming the best existing MLLMs by 21.61% and even surpassing much larger 70B models.
Paper Type: Long
Research Area: Multimodality and Language Grounding to Vision, Robotics and Beyond
Research Area Keywords: Multimodality and Language Grounding to Vision, Robotics and Beyond
Contribution Types: Publicly available software and/or pre-trained models, Data resources
Languages Studied: English
Submission Number: 2128
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview