Abstract: Change captioning aims to describe differences between a pair of images using natural language. However, learning effective difference representations is highly challenging due to distractors such as illumination and viewpoint changes. To address this, we propose a change-entity-guided disentanglement network that explicitly learns difference representations while mitigating the impact of distractors. Specifically, we first design a change entity retrieval module to identify key objects involved in the change from a textual perspective. Then, we introduce a difference representation enhancement module that strengthens the learned features, disentangling genuine differences from background variations. To further refine the generation process, we incorporate a gated Transformer decoder, which dynamically integrates both visual difference and textual change-entity information. Extensive experiments on CLEVR-Change, CLEVR-DC and Spot-the-Diff datasets demonstrate that our method outperforms existing approaches, achieving state-of-the-art performance. The code will be released.025
Paper Type: Long
Research Area: Multimodality and Language Grounding to Vision, Robotics and Beyond
Research Area Keywords: cross-modal content generation
Contribution Types: NLP engineering experiment
Languages Studied: english
Submission Number: 7132
Loading