On the Sample Complexity of Differentially Private Policy Optimization

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Policy optimization, differential privacy, policy gradient, natural policy gradient, sample complexity
TL;DR: We establish the first set of sample complexity bounds for private policy optimization
Abstract: Policy optimization (PO) is a cornerstone of modern reinforcement learning (RL), with diverse applications spanning robotics, healthcare, and large language model training. The increasing deployment of PO in sensitive domains, however, raises significant privacy concerns. In this paper, we initiate a theoretical study of differentially private policy optimization, focusing explicitly on its sample complexity. We first formalize an appropriate definition of differential privacy (DP) tailored to PO, addressing the inherent challenges arising from on-policy learning dynamics and the subtlety involved in defining the unit of privacy. We then systematically analyze the sample complexity of widely-used PO algorithms, including policy gradient (PG), natural policy gradient (NPG) and more, under DP constraints and various settings, via a unified framework. Our theoretical results demonstrate that privacy costs can often manifest as lower-order terms in the sample complexity, while also highlighting subtle yet important observations in private PO settings. These offer valuable practical insights for privacy-preserving PO algorithms.
Supplementary Material: zip
Primary Area: Social and economic aspects of machine learning (e.g., fairness, interpretability, human-AI interaction, privacy, safety, strategic behavior)
Submission Number: 25010
Loading