On Designing General and Expressive Quantum Graph Neural Networks with Applications to MILP Instance Representation
Keywords: Quantum machine learning, Mixed-integer linear programming, Graph learning
Abstract: Graph-structured data is ubiquitous, and graph learning models have recently been extended to address complex problems like mixed-integer linear programming (MILP). However, studies have shown that the vanilla message-passing based graph neural networks (GNNs) suffer inherent limitations in learning MILP instance representation, i.e., GNNs may map two different MILP instance graphs to the same representation. In this paper, we introduce an expressive quantum graph learning approach, leveraging quantum circuits to recognize patterns that are difficult for classical methods to learn. Specifically, the proposed General Quantum Graph Learning Architecture (GQGLA) is composed of a node feature layer, a graph message interaction layer, and an optional auxiliary layer. Its generality is reflected in effectively encoding features of nodes and edges while ensuring node permutation equivariance and flexibly creating different circuit structures for various expressive requirements and downstream tasks. GQGLA is well suited for learning complex graph tasks like MILP representation. Experimental results highlight the effectiveness of GQGLA in capturing and learning representations for MILPs. In comparison to traditional GNNs, GQGLA exhibits superior discriminative capabilities and demonstrates enhanced generalization across various problem instances, making it a promising solution for complex graph tasks.
Supplementary Material: pdf
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2442
Loading