Collaborative and Efficient Personalization with Mixtures of Adaptors

19 Sept 2024 (modified: 24 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: federated learning, collaborative learning, adaptors
TL;DR: We propose an efficient formulation for personalized federated learning problems that utilizes mixture of adaptors for personalization and weight sharing as an implicit regularizer. We demonstrate its benefits experimentally and theoretically.
Abstract: Non-iid data is prevalent in real-world federated learning problems. Data heterogeneity can come in different types in terms of distribution shifts. In this work, we are interested in the heterogeneity that comes from concept shifts, i.e., shifts in the prediction across clients. In particular, we consider multi-task learning, where we want the model to adapt to the task of the client. We propose a parameter-efficient framework to tackle this issue, where each client learns to mix between parameter-efficient adaptors according to its task. We use Low-Rank Adaptors (LoRAs) as the backbone and extend its concept to other types of layers. We call our framework Federated Low-Rank Adaptive Learning (FLoRAL). This framework is not an algorithm but rather a model parameterization for a multi-task learning objective, so it can work on top of any algorithm that optimizes this objective, which includes many algorithms from the literature. FLoRAL is memory-efficient, and clients are personalized with small states (e.g., one number per adaptor) as the adaptors themselves are federated. Hence, personalization is--in this sense--federated as well. Even though clients can personalize more freely by training an adaptor locally, we show that collaborative and efficient training of adaptors is possible and performs better. We also show that FLoRAL can outperform an ensemble of full models with optimal cluster assignment, which demonstrates the benefits of federated personalization and the robustness of FLoRAL to overfitting. We show promising experimental results on synthetic datasets, real-world federated multi-task problems such as MNIST, CIFAR-10, and CIFAR-100. We also provide a theoretical analysis of local SGD on a relaxed objective and discuss the effects of aggregation mismatch on convergence.
Supplementary Material: zip
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1813
Loading