RetriBooru: Leakage-Free Retrieval of Conditions from Reference Images for Subject-Driven Generation

26 Sept 2024 (modified: 20 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Dataset, Subject-driven generation, Evaluation Metrics, Diffusion Models
TL;DR: New dataset for subject-driven generation with annotated concepts and identities, which enables better training pipeline and new tasks. New metrics to evaluate the fusion of reference images and text prompts are proposed to assist.
Abstract:

Diffusion-based methods have demonstrated remarkable capabilities in generating a diverse array of high-quality images, sparking interests for styled avatars, virtual try-on, and more. Previous methods use the same reference image as the target. An overlooked aspect is the leakage of the target's spatial information, style, etc. from the reference, harming the generated diversity and causing shortcuts. However, this approach continues as widely available datasets usually consist of single images not grouped by identities, and it is expensive to recollect large-scale same-identity data. Moreover, existing metrics adopt decoupled evaluation on text alignment and identity preservation, which fail at distinguishing between balanced outputs and those that over-fit to one aspect. In this paper, we propose a multi-level, same-identity dataset RetriBooru, which groups anime characters by both face and cloth identities. RetriBooru enables adopting reference images of the same character and outfits as the target, while keeping flexible gestures and actions. We benchmark previous methods on our dataset, and demonstrate the effectiveness of training with a reference image different from target (but same identity). We introduce a new concept composition task, where the conditioning encoder learns to retrieve different concepts from several reference images, and modify a baseline network RetriNet for the new task. Finally, we introduce a novel class of metrics named Similarity Weighted Diversity (SWD), to measure the overlooked diversity and better evaluate the alignment between similarity and diversity.

Supplementary Material: pdf
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7725
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview