V-LoL: A Diagnostic Dataset for Visual Logical Learning

Published: 04 Feb 2025, Last Modified: 04 Feb 2025Accepted by DMLREveryoneRevisionsBibTeX
Abstract: Despite the successes of recent developments in visual AI, different shortcomings still exist; from missing exact logical reasoning, to abstract generalization abilities, to understanding complex and noisy scenes. Unfortunately, existing benchmarks, were not designed to cap- ture more than a few of these aspects. Whereas deep learning datasets focus on visually complex data but simple visual reasoning tasks, inductive logic datasets involve complex logical learning tasks, however, lack the visual component. To address this, we propose the diagnostic visual logical learning dataset, V-LoL, that seamlessly combines visual and logical challenges. Notably, we introduce the first instantiation of V-LoL, V-LoL-Train, -- a visual rendition of a classic benchmark in symbolic AI, the Michalski train problem. By incorporating intricate visual scenes and flexible logical reasoning tasks within a versatile framework, V-LoL-Train provides a platform for investigating a wide range of visual logical learning challenges. We evaluate a variety of AI systems including traditional symbolic AI, neural AI, as well as neuro-symbolic AI. Our evaluations demonstrate that even SOTA AI faces difficulties in dealing with visual logical learning challenges, highlighting unique advantages and limitations of each methodology. Overall, V-LoL opens up new avenues for understanding and enhancing current abilities in visual logical learning for AI systems.
Keywords: diagnostic, vision, logic, dataset, generator
Changes Since Last Submission: N/A
Code: https://sites.google.com/view/v-lol
Assigned Action Editor: ~Christopher_De_Sa1
Submission Number: 21
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview