A Survey on Deep Graph Generation: Methods and ApplicationsDownload PDF

Published: 24 Nov 2022, Last Modified: 05 May 2023LoG 2022 PosterReaders: Everyone
Abstract: Graphs are ubiquitous in encoding relational information of real-world objects in many domains. Graph generation, whose purpose is to generate new graphs from a distribution similar to the observed graphs, has received increasing attention thanks to the recent advances of deep learning models. In this paper, we conduct a comprehensive review on the existing literature of deep graph generation from a variety of emerging methods to its wide application areas. Specifically, we first formulate the problem of deep graph generation and discuss its difference with several related graph learning tasks. Secondly, we divide the state-of-the-art methods into three categories based on model architectures and summarize their generation strategies. Thirdly, we introduce three key application areas of deep graph generation. Lastly, we highlight challenges and opportunities in the future study of deep graph generation. We hope that our survey will be useful for researchers and practitioners who are interested in this exciting and rapidly-developing field.
PDF File: pdf
Type Of Submission: Full paper proceedings track submission (max 9 main pages).
Agreement: Check this if you are okay with being contacted to participate in an anonymous survey.
Type Of Submission: Full paper proceedings track submission.
Poster: jpg
Poster Preview: jpg
5 Replies

Loading