Primary Area: societal considerations including fairness, safety, privacy
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: fairness, adversarial attack, adversarial robustness
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: adversarial attack and defense framework targeting fairness
Abstract: While numerous work has been proposed to address fairness in machine learning, existing methods do not guarantee fair predictions under imperceptible adversarial feature perturbation, and a seemingly fair model can suffer from large group-wise disparities under such perturbation. Moreover, while adversarial training has been shown to be reliable in improving a model's robustness to defend against adversarial feature perturbation that deteriorates accuracy, it has not been properly studied in the context of adversarial perturbation against fairness. To tackle these challenges, in this paper, we study the problem of adversarial attack and adversarial robustness w.r.t. two terms: fairness and accuracy. From the adversarial attack perspective, we propose a unified structure for adversarial attacks against fairness which brings together common notions in group fairness, and we theoretically prove the equivalence of adversarial attacks against different fairness notions. Further, we derive the connections between adversarial attacks against fairness and those against accuracy. From the adversarial robustness perspective, we theoretically align robustness to adversarial attacks against fairness and accuracy, where robustness w.r.t. one term enhances robustness w.r.t. the other term. Our study suggests a novel way to unify adversarial training w.r.t. fairness and accuracy, and experiments show our proposed method achieves better robustness w.r.t. both terms.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7943
Loading