Keywords: part-level understanding, fine-grained, hierarchy
Abstract: Understanding objects at the level of their constituent parts is fundamental to advancing computer vision, graphics, and robotics. While datasets like PartNet have driven progress in 3D part understanding, their reliance on untextured geometries and expert-dependent annotation limits scalability and usability. We introduce PartNeXt, a next-generation dataset addressing these gaps with over 23000 high-quality, textured 3D models annotated with fine-grained, hierarchical part labels across 50 categories. 
We benchmark PartNeXt on two tasks: (1) class-agnostic part segmentation, where state-of-the-art methods (e.g., PartField, SAMPart3D) struggle with fine-grained and leaf-level parts, and (2) 3D part-centric question answering, a new benchmark for 3D-LLMs that reveals significant gaps in open-vocabulary part grounding. Additionally, training Point-SAM on PartNeXt yields substantial gains over PartNet, underscoring the dataset’s superior quality and diversity. By combining scalable annotation, texture-aware labels, and multi-task evaluation, PartNeXt opens new avenues for research in structured 3D understanding.
Croissant File:  json
Dataset URL: https://huggingface.co/datasets/AuWang/PartNeXt
Supplementary Material:  zip
Primary Area: Datasets & Benchmarks for applications in computer vision
Submission Number: 492
Loading