Keywords: Proteins, latent diffusion
TL;DR: By leveraging latent and structure diffusion, we propose a hierarchical protein backbone generative model with guidance towards lower PAE and more diverse folds.
Abstract: We propose a hierarchical protein backbone generative model that separates coarse and fine-grained details. Our approach called LSD consists of two stages: sampling latents which are decoded into a contact map then sampling atomic coordinates conditioned on the contact map. LSD allows new ways to control protein generation towards desirable properties while scaling to large datasets. In particular, the AlphaFold DataBase (AFDB) is appealing due as its diverse structure topologies but suffers from poor designability. We train LSD on AFDB and show latent diffusion guidance towards AlphaFold2 Predicted Alignment Error and long range contacts can explicitly balance designability, diversity, and noveltys in the generated samples. Our results are competitive with structure diffusion models and outperforms prior latent diffusion models.
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3247
Loading