Reward-Robust RLHF in LLMs

ICLR 2025 Conference Submission761 Authors

14 Sept 2024 (modified: 24 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: RLHF, LLM, robustness, alignment
TL;DR: We introduce a reward-robust RLHF framework for LLMs aimed at mitigating issues raised by imperfection of RMs.
Abstract: As Large Language Models continue to progress toward more advanced forms of intelligence, Reinforcement Learning from Human Feedback is increasingly seen as a key pathway toward achieving Artificial General Intelligence. However, the reliance on reward-model-based alignment methods introduces significant challenges due to the inherent instability and imperfections of Reward Models (RMs), which can lead to critical issues such as reward hacking and misalignment with human intentions. In this paper, we introduce a reward-robust RLHF framework aimed at addressing these fundamental challenges, paving the way for more reliable and resilient learning in LLMs. Our approach introduces a novel optimization objective that carefully balances performance and robustness by incorporating Bayesian Reward Model Ensembles to model the uncertainty set of reward functions. This allows the framework to integrate both nominal performance and minimum reward signals, ensuring more stable learning even with imperfect RMs. Empirical results demonstrate that our framework consistently outperforms baselines across diverse benchmarks, showing improved accuracy and long-term stability. We also provide a theoretical analysis, demonstrating that reward-robust RLHF approaches the stability of constant reward settings, which proves to be acceptable even in a stochastic-case analysis. Together, these contributions highlight the framework’s potential to enhance both the performance and stability of LLM alignment.
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 761
Loading