TL;DR: Continual reinforcement learning research is being mislead by lifetime tuning.
Abstract: In continual RL we want agents capable of never-ending learning, and yet our evaluation methodologies do not reflect this. The standard practice in RL is to assume unfettered access to the deployment environment for the full lifetime of the agent. For example, agent designers select the best performing hyperparameters in Atari by testing each for 200 million frames and then reporting results on 200 million frames. In this position paper, we argue and demonstrate the pitfalls of this inappropriate empirical methodology: lifetime tuning. We provide empirical evidence to support our position by testing DQN and SAC across several of continuing and non-stationary environments with two main findings: (1) lifetime tuning does not allow us to identify algorithms that work well for continual learning---all algorithms equally succeed; (2) recently developed continual RL algorithms outperform standard non-continual algorithms when tuning is limited to a fraction of the agent's lifetime. The goal of this paper is to provide an explanation for why recent progress in continual RL has been mixed and motivate the development of empirical practices that better match the goals of continual RL.
Lay Summary: In continual reinforcement learning (RL) we want agents capable of never-ending learning, and yet our evaluation methodologies do not reflect this. The standard practice in RL is to assume unfettered access to the deployment environment for the full lifetime of the agent. For example, agent designers select the best performing hyperparameters (configurable parameters) in Atari by testing each for 200 million frames and then reporting results on 200 million frames. In this position paper, we argue and demonstrate the pitfalls of this inappropriate empirical methodology: \emph{lifetime tuning}. We provide empirical evidence to support our position by testing DQN and SAC (two popular algorithms) across several continuing and non-stationary environments with two main findings: (1) lifetime tuning does not allow us to identify algorithms that work well for continual learning---all algorithms equally succeed; (2) recently developed continual RL algorithms outperform standard non-continual algorithms when tuning is limited to a fraction of the agent's lifetime. The goal of this paper is to provide an explanation for why recent progress in continual RL has been mixed and motivate the development of empirical practices that better match the goals of continual RL.
Primary Area: Research Priorities, Methodology, and Evaluation
Keywords: Continual Reinforcement Learning, Lifelong Reinforcement Learning, Hyperparameter Selection
Submission Number: 428
Loading