Keywords: AI for Science, Inertial Confinement Fusion
TL;DR: LPI-LLM combines LLMs with reservoir computing to accurately predict laser-plasma instabilities in fusion experiments, outperforming existing methods and offering a cost-effective alternative to traditional simulations.
Abstract: Controlled fusion energy is deemed pivotal for the advancement of human civilization. In this study, we introduce $\textbf{LPI-LLM}$, a novel integration of Large Language Models (LLMs) with classical reservoir computing paradigms tailored to address a critical challenge, Laser-Plasma Instabilities ($\texttt{LPI}$), in Inertial Confinement Fusion ($\texttt{ICF}$). Our approach offers several key contributions: Firstly, we propose the $\textit{LLM-anchored Reservoir}$, augmented with a $\textit{Fusion-specific Prompt}$, enabling accurate forecasting of $\texttt{LPI}$-generated-hot electron dynamics during implosion. Secondly, we develop $\textit{Signal-Digesting Channels}$ to temporally and spatially describe the driver laser intensity across time, capturing the unique characteristics of $\texttt{ICF}$ inputs. Lastly, we design the $\textit{Confidence Scanner}$ to quantify the confidence level in forecasting, providing valuable insights for domain experts to design the $\texttt{ICF}$ process. Extensive experiments demonstrate the superior performance of our method, achieving 1.90 CAE, 0.14 $\texttt{top-1}$ MAE, and 0.11 $\texttt{top-5}$ MAE in predicting Hard X-ray ($\texttt{HXR}$) energies emitted by the hot electrons in $\texttt{ICF}$ implosions, which presents state-of-the-art comparisons against concurrent best systems. Additionally, we present $\textbf{LPI4AI}$, the first $\texttt{LPI}$ benchmark based on physical experiments, aimed at fostering novel ideas in $\texttt{LPI}$ research and enhancing the utility of LLMs in scientific exploration. Overall, our work strives to forge an innovative synergy between AI and $\texttt{ICF}$ for advancing fusion energy.
Supplementary Material: zip
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4098
Loading