MergePrint: Robust Fingerprinting against Merging Large Language Models

26 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: model fingerprinting, large language models, model merging
TL;DR: We propose a fingerprinting method that does not disappear when model merging is performed. This is a technique for LLM IP protection.
Abstract: As the cost of training large language models (LLMs) rises, protecting their intellectual property has become increasingly critical. Model merging, which integrates multiple expert models into a single model capable of performing multiple tasks, presents a growing risk of unauthorized and malicious usage. While fingerprinting techniques have been studied for asserting model ownership, existing methods have primarily focused on fine-tuning, leaving model merging underexplored. To address this gap, we propose a novel fingerprinting method MergePrint that embeds robust fingerprints designed to preserve ownership claims even after model merging. By optimizing against a pseudo-merged model, which simulates post-merged model weights, MergePrint generates fingerprints that remain detectable after merging. Additionally, we optimize the fingerprint inputs to minimize performance degradation, enabling verification through specific outputs from targeted inputs. This approach provides a practical fingerprinting strategy for asserting ownership in cases of misappropriation through model merging.
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6417
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview