Repurposing AlphaFold3-like Protein Folding Models for Antibody Sequence and Structure Co-design

Published: 06 Mar 2025, Last Modified: 26 Apr 2025GEMEveryoneRevisionsBibTeXCC BY 4.0
Track: Machine learning: computational method and/or computational results
Nature Biotechnology: Yes
Keywords: antibody design, alphafold3
TL;DR: In this work, we repurpose AlphaFold3-like protein folding models for antibody sequence and structure co-design.
Abstract:

Diffusion models hold great potential for accelerating antibody design, but their performance is so far limited by the number of antibody-antigen complexes used for model training. Meanwhile, AlphaFold3-like protein folding models, pre-trained on a large corpus of crystal structures, have acquired a broad understanding of biomolecular interaction. Based on this insight, we develop a new antigen-conditioned antibody design model by adapting the diffusion module of AlphaFold3-like models for sequence-structure co-diffusion. Specifically, we extend their structure diffusion module with a sequence diffusion head and fine-tune the entire protein folding model for antibody sequence-structure co-design. Our benchmark results show that sequence-structure co-diffusion models not only surpass state-of-the-art antibody design methods in performance but also maintain structure prediction accuracy comparable to the original folding model. Notably, in the antibody co-design task, our method achieves a CDR-H3 recovery rate of 65% for typical antibodies, outperforming the baselines by 87%, and attains a remarkable 63% recovery rate for nanobodies.

Anonymization: This submission has been anonymized for double-blind review via the removal of identifying information such as names, affiliations, and identifying URLs.
Presenter: Wengong Jin
Format: Yes, the presenting author will definitely attend in person because they attending ICLR for other complementary reasons.
Funding: No, the presenting author of this submission does *not* fall under ICLR’s funding aims, or has sufficient alternate funding.
Submission Number: 22
Loading