SBSC: Step-by-Step Coding for Improving Mathematical Olympiad Performance

Published: 10 Oct 2024, Last Modified: 01 Nov 2024MATH-AI 24EveryoneRevisionsBibTeXCC BY 4.0
Keywords: AI Math Reasoning, LLM Math Reasoning, Olympiad-Math
Abstract: We propose Step-by-Step Coding (SBSC): a multi-turn math reasoning framework that enables Large Language Models (LLMs) to generate sequence of programs for solving Olympiad level math problems. After each turn/step, by leveraging the code execution outputs and programs of previous steps, the model generates the next sub-task and the corresponding program to complete it. SBSC allows more granular, flexible and precise approach to problem-solving compared to existing methods. Extensive experiments highlight the effectiveness of SBSC in tackling competition and Olympiad-level math problems. For Claude-3.5-Sonnet, we observe SBSC (greedy decoding) surpasses existing state-of-the-art (SOTA) program generation based reasoning strategies by absolute 10.7% on AMC12, 8% on AIME and 12.6% on MathOdyssey. Given SBSC is multi-turn in nature, we also benchmark SBSC’s greedy decoding against self-consistency decoding results of existing SOTA math reasoning strategies and observe performance gain by absolute 6.2% on AMC, 6.7% on AIME and 7.4% on MathOdyssey.
Concurrent Submissions: ICLR
Submission Number: 26
Loading