Backdooring Bias into Text-to-Image Models

27 Sept 2024 (modified: 14 Jan 2025)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: trustworthy ml, fairness, backdoor attack, text-to-image models
Abstract: Text-conditional diffusion models, i.e. text-to-image, produce eye-catching images that represent descriptions given by a user. These images often depict benign concepts but could also carry other purposes. Specifically, visual information is easy to comprehend and could be weaponized for propaganda -- a serious challenge given widespread usage and deployment of generative models. In this paper, we show that an adversary can add an arbitrary bias through a backdoor attack that would affect even benign users generating images. While a user could inspect a generated image to comply with the given text description, our attack remains stealthy as it preserves semantic information given in the text prompt. Instead, a compromised model modifies other unspecified features of the image to add desired biases (that increase by $4-8\times$). Furthermore, we show how the current state-of-the-art generative models make this attack both cheap and feasible for any adversary, with costs ranging between \\$12-\\$18. We evaluate our attack over various types of triggers, adversary objectives, and biases and discuss mitigations and future work.
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11922
Loading