SMARTraj$^2$: A Stable Multi-City Adaptive Method for Multi-View Spatio-Temporal Trajectory Representation Learning
Keywords: Trajectory Representation Learning, Spatio-Temporal Data Mining, Self-Supervised Learning
Abstract: Spatio-temporal trajectory representation learning plays a crucial role in various urban applications such as transportation systems, urban planning, and environmental monitoring. Existing methods can be divided into single-view and multi-view approaches, with the latter offering richer representations by integrating multiple sources of spatio-temporal data. However, these methods often struggle to generalize across diverse urban scenes due to multi-city structural heterogeneity, which arises from the disparities in road networks, grid layouts, and traffic regulations across cities, and the amplified seesaw phenomenon, where optimizing for one city, view, or task can degrade performance in others. These challenges hinder the deployment of trajectory learning models across multiple cities, limiting their real-world applicability. In this work, we propose SMARTraj$^2$, a novel stable multi-city adaptive method for multi-view spatio-temporal trajectory representation learning. Specifically, we introduce a feature disentanglement module to separate domain-invariant and domain-specific features, and a personalized gating mechanism to dynamically stabilize the contributions of different views and tasks. Our approach achieves superior generalization across heterogeneous urban scenes while maintaining robust performance across multiple downstream tasks. Extensive experiments on benchmark datasets demonstrate the effectiveness of SMARTraj$^2$ in enhancing cross-city generalization and outperforming state-of-the-art methods. See our project website at \url{https://github.com/GestaltCogTeam/SMARTraj}.
Primary Area: Applications (e.g., vision, language, speech and audio, Creative AI)
Submission Number: 9777
Loading