Deep Backtracking Counterfactuals for Causally Compliant Explanations

23 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: causal reasoning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: counterfactuals, generative modeling, causality, counterfactual explanations
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Counterfactuals can offer valuable insights by answering what would have been observed under altered circumstances, conditional on a factual observation. Whereas the classical interventional interpretation of counterfactuals has been studied extensively, backtracking constitutes a less studied alternative where all causal laws are kept intact. In the present work, we introduce a practical method for computing backtracking counterfactuals in structural causal models that consist of deep generative components. To this end, we impose conditions on the structural assignments that enable the generation of counterfactuals by solving a tractable constrained optimization problem in the structured latent space of a causal model. Our formulation also facilitates a comparison with methods in the field of counterfactual explanations. Compared to these, our method represents a versatile, modular and causally compliant alternative. We demonstrate these properties experimentally on a modified version of MNIST and CelebA.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7148
Loading